

Math Virtual Learning

Precalculus with Trigonometry

May 15, 2020

Precalculus with Trigonometry Lesson: May 15th, 2020

Objective/Learning Target:

Students will be able to find powers and roots of complex numbers written in trigonometric form.

Let's Get Started:

Before watching the video, recall from the previous lesson how to determine the r and θ values of a complex number given in standard form.

$$r = \sqrt{a^2 + b^2}$$
, and $\tan \theta = b/a$.

Watch Video: Complex Number to a Power Using DeMoivre's Theorem

So in essence, DeMoivre's Theorem is a much more efficient method to determine the value of a power of a complex number.

DeMoivre's Theorem

If $z = r(\cos \theta + i \sin \theta)$ is a complex number and *n* is a positive integer, then $z^{n} = [r(\cos \theta + i \sin \theta)]^{n}$ $= r^{n}(\cos n\theta + i \sin n\theta).$

Example #1:

Use DeMoivre's Theorem to find $(-1 + \sqrt{3i})^{12}$.

Solution

First convert the complex number to trigonometric form using

$$r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$
 and $\theta = \arctan \frac{\sqrt{3}}{-1} = \frac{2\pi}{3}$.

So, the trigonometric form is

$$z = -1 + \sqrt{3}i = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

Then, by DeMoivre's Theorem, you have

$$(-1 + \sqrt{3}i)^{12} = \left[2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)\right]^{12}$$
$$= 2^{12}\left[\cos\frac{12(2\pi)}{3} + i\sin\frac{12(2\pi)}{3}\right]$$
$$= 4096(\cos 8\pi + i\sin 8\pi)$$
$$= 4096(1 + 0)$$
$$= 4096.$$

Question: Since there is a method to find a power of a complex number written in trigonometric form, is there a method to determine roots?

Answer: Absolutely

Watch the following video to see how to determine a root using the trigonometric form of a complex number.

Video: Finding nth Roots of a Complex Number

Definition of an nth Root of a Complex Number

The complex number u = a + bi is an *n*th root of the complex number z if

 $z = u^n = (a + bi)^n.$

Finding nth Roots of a Complex Number

For a positive integer *n*, the complex number $z = r(\cos \theta + i \sin \theta)$ has exactly *n* distinct *n*th roots given by Imaginary

$$\sqrt[n]{r}\left(\cos\frac{\theta+2\pi k}{n}+i\sin\frac{\theta+2\pi k}{n}\right)$$

where $k = 0, 1, 2, \dots, n-1$.

Example #2: Find all sixth roots of 1.

Solution

First write 1 in the trigonometric form $1 = 1(\cos 0 + i \sin 0)$. Then, by the *n*th root formula, with n = 6 and r = 1, the roots have the form

$$\sqrt[6]{1}\left(\cos\frac{0+2\pi k}{6}+i\sin\frac{0+2\pi k}{6}\right)=\cos\frac{\pi k}{3}+i\sin\frac{\pi k}{3}.$$

So, for k = 0, 1, 2, 3, 4, and 5, the sixth roots are as follows. (See Figure 6.49.)

Example #3: Find the three cube roots of z = -2 + 2i.

Solution

Because z lies in Quadrant II, the trigonometric form of z is

$$z = -2 + 2i$$

= $\sqrt{8} (\cos 135^\circ + i \sin 135^\circ).$ $\theta = \arctan\left(\frac{2}{-2}\right) = 135^\circ$

By the formula for *n*th roots, the cube roots have the form

$$\sqrt[6]{8} \left(\cos \frac{135^\circ + 360^\circ k}{3} + i \sin \frac{135^\circ + 360^\circ k}{3} \right).$$

Finally, for k = 0, 1, and 2, you obtain the roots

$$\sqrt[6]{8} \left(\cos \frac{135^\circ + 360^\circ(0)}{3} + i \sin \frac{135^\circ + 360^\circ(0)}{3} \right) = \sqrt{2} (\cos 45^\circ + i \sin 45^\circ)$$
$$= 1 + i$$

$$\sqrt[6]{8}\left(\cos\frac{135^\circ + 360^\circ(1)}{3} + i\sin\frac{135^\circ + 360^\circ(1)}{3}\right) = \sqrt{2}(\cos 165^\circ + i\sin 165^\circ)$$

 $\approx -1.3660 + 0.3660i$

$$\sqrt[6]{8} \left(\cos \frac{135^\circ + 360^\circ(2)}{3} + i \sin \frac{135^\circ + 360^\circ(2)}{3} \right) = \sqrt{2} (\cos 285^\circ + i \sin 285^\circ)$$
$$\approx 0.3660 - 1.3660i.$$

Imaginary

See Figure 6.50.

FIGURE 6.50

Practice

On a separate piece of paper, do each of the following problems. Answers will be provided on the next page.

Use Demoivre's Theorem to find the indicated power.

1.
$$(1 + i)^5$$

2. $(3 - 2i)^8$

Use the formula on a previous screen to find the indicated roots of a complex number and write each root in standard form.

3. Square roots of $16(\cos 60^\circ + i \sin 60^\circ)$

4. Fifth roots of
$$32\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

Practice - ANSWERS

2. -239 + 28560i

3. $4(\cos 30^\circ + i \sin 30^\circ) = 2\sqrt{3} + 2i$ $4(\cos 210^\circ + i \sin 210^\circ) = -2\sqrt{3} - 2i$

4.
$$2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) = \sqrt{3} + i$$

 $2\left(\cos\frac{17\pi}{30} + i\sin\frac{17\pi}{30}\right) = -0.4158 + 1.9563i$
 $2\left(\cos\frac{29\pi}{30} + i\sin\frac{29\pi}{30}\right) = -1.9890 + 0.2091i$
 $2\left(\cos\frac{41\pi}{30} + i\sin\frac{41\pi}{30}\right) = -0.8135 - 1.8271i$
 $2\left(\cos\frac{53\pi}{30} + i\sin\frac{53\pi}{30}\right) = 1.4863 - 1.3383i$

Additional Resource Videos:

DeMoivre's Theorem: Raising a Complex Number to a Power, Ex 1

DeMoivre's Theorem: Raising a Complex Number to a Power, Ex 2

Roots of Complex Numbers, Ex 1

Additional Practice:

Complex Numbers Rectangular and Trig Form

Problems 19-24 Please note that when it asks for Polar Form, it means Trig Form

DeMoivre's Theorm Worksheet