Math Virtual Learning

Precalculus with Trigonometry

May 15, 2020

Precalculus with Trigonometry Lesson: May 15th, 2020

Objective/Learning Target:

Students will be able to find powers and roots of complex numbers written in trigonometric form.

Let's Get Started:

Before watching the video, recall from the previous lesson how to determine the r and θ values of a complex number given in standard form.

$$
r=\sqrt{a^{2}+b^{2}}, \text { and } \tan \theta=b / a .
$$

Watch Video: Complex Number to a Power Using DeMoivre's Theorem

So in essence, DeMoivre's Theorem is a much more efficient method to determine the value of a power of a complex number.

DeMoivre's Theorem

If $z=r(\cos \theta+i \sin \theta)$ is a complex number and n is a positive integer, then

$$
\begin{aligned}
z^{n} & =[r(\cos \theta+i \sin \theta)]^{n} \\
& =r^{n}(\cos n \theta+i \sin n \theta) .
\end{aligned}
$$

Example \#1: Use DeMoivre's Theorem to find $(-1+\sqrt{3 i})^{12}$.

Solution

First convert the complex number to trigonometric form using

$$
r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2 \quad \text { and } \quad \theta=\arctan \frac{\sqrt{3}}{-1}=\frac{2 \pi}{3}
$$

So, the trigonometric form is

$$
z=-1+\sqrt{3} i=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)
$$

Then, by DeMoivre's Theorem, you have

$$
\begin{aligned}
(-1+\sqrt{3} i)^{12} & =\left[2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)\right]^{12} \\
& =2^{12}\left[\cos \frac{12(2 \pi)}{3}+i \sin \frac{12(2 \pi)}{3}\right] \\
& =4096(\cos 8 \pi+i \sin 8 \pi) \\
& =4096(1+0) \\
& =4096
\end{aligned}
$$

Question: Since there is a method to find a power of a complex number written in trigonometric form, is there a method to determine roots?

Answer: Absolutely

Watch the following video to see how to determine a root using the trigonometric form of a complex number.

Video: Finding nth Roots of a Complex Number

Definition of an nth Root of a Complex Number

The complex number $u=a+b i$ is an \boldsymbol{n} th root of the complex number z if

$$
z=u^{n}=(a+b i)^{n} .
$$

Finding nth Roots of a Complex Number

For a positive integer n, the complex number $z=r(\cos \theta+i \sin \theta)$ has exactly n distinct nth roots given by

$$
\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right)
$$

where $k=0,1,2, \ldots, n-1$.

Example \#2: Find all sixth roots of 1.

Solution

First write 1 in the trigonometric form $1=1(\cos 0+i \sin 0)$. Then, by the nth root formula, with $n=6$ and $r=1$, the roots have the form

$$
\sqrt[6]{1}\left(\cos \frac{0+2 \pi k}{6}+i \sin \frac{0+2 \pi k}{6}\right)=\cos \frac{\pi k}{3}+i \sin \frac{\pi k}{3}
$$

So, for $k=0,1,2,3,4$, and 5 , the sixth roots are as follows. (See Figure 6.49.)

$$
\begin{aligned}
\cos 0+i \sin 0 & =1 \\
\cos \frac{\pi}{3}+i \sin \frac{\pi}{3} & =\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3} & =-\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
\cos \pi+i \sin \pi & =-1 \\
\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} & =-\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3} & =\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{aligned}
$$

Example \#3: Find the three cube roots of $z=-2+2 i$.

Solution

Because z lies in Quadrant II, the trigonometric form of z is

$$
\begin{aligned}
z & =-2+2 i \\
& =\sqrt{8}\left(\cos 135^{\circ}+i \sin 135^{\circ}\right) . \quad \theta=\arctan \left(\frac{2}{-2}\right)=135^{\circ}
\end{aligned}
$$

By the formula for nth roots, the cube roots have the form

$$
\sqrt[6]{8}\left(\cos \frac{135^{\circ}+360^{\circ} k}{3}+i \sin \frac{135^{\circ}+360^{\circ} k}{3}\right)
$$

Finally, for $k=0,1$, and 2 , you obtain the roots

$$
\begin{aligned}
\sqrt[6]{8}\left(\cos \frac{135^{\circ}+360^{\circ}(0)}{3}+i \sin \frac{135^{\circ}+360^{\circ}(0)}{3}\right) & =\sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) \\
& =1+i \\
\sqrt[6]{8}\left(\cos \frac{135^{\circ}+360^{\circ}(1)}{3}+i \sin \frac{135^{\circ}+360^{\circ}(1)}{3}\right) & =\sqrt{2}\left(\cos 165^{\circ}+i \sin 165^{\circ}\right) \\
& \approx-1.3660+0.3660 i \\
\sqrt[6]{8}\left(\cos \frac{135^{\circ}+360^{\circ}(2)}{3}+i \sin \frac{135^{\circ}+360^{\circ}(2)}{3}\right) & =\sqrt{2}\left(\cos 285^{\circ}+i \sin 285^{\circ}\right) \\
& \approx 0.3660-1.3660 i .
\end{aligned}
$$

Practice

On a separate piece of paper, do each of the following problems. Answers will be provided on the next page.

Use Demoivre's Theorem to find the indicated power.

1. $(1+i)^{5}$
2. $(3-2 i)^{8}$

Use the formula on a previous screen to find the indicated roots of a complex number and write each root in standard form.
3. Square roots of $16\left(\cos 60^{\circ}+i \sin 60^{\circ}\right)$
4. Fifth roots of $32\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$

Practice - ANSWERS

1. $-4-4 i$
2. $-239+28560 i$
3. $4\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)=2 \sqrt{3}+2 i$ $4\left(\cos 210^{\circ}+i \sin 210^{\circ}\right)=-2 \sqrt{3}-2 i$
4. $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
$=\sqrt{3}+i$
$2\left(\cos \frac{17 \pi}{30}+i \sin \frac{17 \pi}{30}\right)=-0.4158+1.9563 i$
$2\left(\cos \frac{29 \pi}{30}+i \sin \frac{29 \pi}{30}\right)=-1.9890+0.2091 i$
$2\left(\cos \frac{41 \pi}{30}+i \sin \frac{41 \pi}{30}\right)=-0.8135-1.8271 i$
$2\left(\cos \frac{53 \pi}{30}+i \sin \frac{53 \pi}{30}\right)=1.4863-1.3383 i$

Additional Resource Videos: DeMoivre's Theorem: Raising a Complex Number to a Power, Ex 1

DeMoivre's Theorem: Raising a Complex Number to a Power, Ex 2

Roots of Complex Numbers, Ex 1

Additional Practice:
 Complex Numbers Rectangular and Trig Form

Problems 19-24
Please note that when it asks for Polar Form, it means Trig Form

DeMoivre's Theorm Worksheet

